Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.218
Filtrar
1.
ESC Heart Fail ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600875

RESUMO

AIMS: Both hypercapnia and hypocapnia are common in patients with acute heart failure (AHF), but the association between partial pressure of arterial carbon dioxide (PaCO2) and AHF prognosis remains unclear. The objective of this study was to investigate the connection between PaCO2 within 24 h after admission to the intensive care unit (ICU) and mortality during hospitalization and at 1 year in AHF patients. METHODS AND RESULTS: AHF patients were enrolled from the Medical Information Mart for Intensive Care IV database. The patients were divided into three groups by PaCO2 values of <35, 35-45, and >45 mmHg. The primary outcome was to investigate the connection between PaCO2 and in-hospital mortality and 1 year mortality in AHF patients. The secondary outcome was to assess the prediction value of PaCO2 in predicting in-hospital mortality and 1 year mortality in AHF patients. A total of 2374 patients were included in this study, including 457 patients in the PaCO2 < 35 mmHg group, 1072 patients in the PaCO2 = 35-45 mmHg group, and 845 patients in the PaCO2 > 45 mmHg group. The in-hospital mortality was 19.5%, and the 1 year mortality was 23.9% in the PaCO2 < 35 mmHg group. Multivariate logistic regression analysis showed that the PaCO2 < 35 mmHg group was associated with an increased risk of in-hospital mortality [hazard ratio (HR) 1.398, 95% confidence interval (CI) 1.039-1.882, P = 0.027] and 1 year mortality (HR 1.327, 95% CI 1.020-1.728, P = 0.035) than the PaCO2 = 35-45 mmHg group. The PaCO2 > 45 mmHg group was associated with an increased risk of in-hospital mortality (HR 1.387, 95% CI 1.050-1.832, P = 0.021); the 1 year mortality showed no significant difference (HR 1.286, 95% CI 0.995-1.662, P = 0.055) compared with the PaCO2 = 35-45 mmHg group. The Kaplan-Meier survival curves showed that the PaCO2 < 35 mmHg group had a significantly lower 1 year survival rate. The area under the receiver operating characteristic curve for predicting in-hospital mortality was 0.591 (95% CI 0.526-0.656), and the 1 year mortality was 0.566 (95% CI 0.505-0.627) in the PaCO2 < 35 mmHg group. CONCLUSIONS: In AHF patients, hypocapnia within 24 h after admission to the ICU was associated with increased in-hospital mortality and 1 year mortality. However, the increase in 1 year mortality may be influenced by hospitalization mortality. Hypercapnia was associated with increased in-hospital mortality.

2.
Phys Med ; 121: 103362, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653120

RESUMO

PURPOSE: To establish a deep learning-based model to predict radiotherapy-induced temporal lobe injury (TLI). MATERIALS AND METHODS: Spatial features of dose distribution within the temporal lobe were extracted using both the three-dimensional convolution (C3D) network and the dosiomics method. The Minimal Redundancy-Maximal-Relevance (mRMR) method was employed to rank the extracted features and select the most relevant ones. Four machine learning (ML) classifiers, including logistic regression (LR), k-nearest neighbors (kNN), support vector machines (SVM) and random forest (RF), were used to establish prediction models. Nested sampling and hyperparameter tuning methods were applied to train and validate the prediction models. For comparison, a prediction model base on the conventional D0.5cc of the temporal lobe obtained from dose volume (DV) histogram was established. The area under the receiver operating characteristic (ROC) curve (AUC) was utilized to compare the predictive performance of the different models. RESULTS: A total of 127 nasopharyngeal carcinoma (NPC) patients were included in the study. In the model based on C3D deep learning features, the highest AUC value of 0.843 was achieved with 5 features. For the dosiomics features model, the highest AUC value of 0.715 was attained with 1 feature. Both of these models demonstrated superior performance compared to the prediction model based on DV parameters, which yielded an AUC of 0.695. CONCLUSION: The prediction model utilizing C3D deep learning features outperformed models based on dosiomics features or traditional parameters in predicting the onset of TLI. This approach holds promise for predicting radiation-induced toxicities and guide individualized radiotherapy.

3.
Bioresour Technol ; 401: 130727, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643952

RESUMO

Understanding the different biological responses to salinity gradient between coexisting biofilm and flocs is crucial for regulating the ecological function of biofilm system. This study investigated performance, dynamics, and community assembly of biofilm system under 3 %-7% salinity gradient. The removal efficiency of NH4+-N remained stable and exceeded 93 % at 3 %-6% salinity, but decreased to below 80 % at 7 % salinity. The elevated salinity promoted the synthesis of extracellular polymer substrates, inhibited microbial respiration, and significantly regulated the microbial community structure. Compared to flocs, biofilm exhibited greater species diversity and richer Nitrosomonas. It was found diffusion limitations dominated the microbial community assembly under the salinity gradient. And microbial network revealed positive interactions predominated the microbial relationships, designating norank Spirochaetaceae, unclassified Micrococcales, Corynebacterium, and Pusillimonas as keystone species. Moreover, distinct salinity preferences in nitrogen transformation-related genes were observed. This study can improve the understanding to the regulation of biofilm systems to salt stresses.

4.
Biosens Bioelectron ; 257: 116284, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38657379

RESUMO

Smart contact lenses (SCLs) have been considered as novel wearable devices for out-of-hospital and self-monitoring applications. They are capable of non-invasively and continuously monitoring physiological signals in the eyes, including vital biophysical (e.g., intraocular of pressure, temperature, and electrophysiological signal) and biochemical signals (e.g., pH, glucose, protein, nitrite, lactic acid, and ions). Recent progress mainly focuses on the rational design of wearable SCLs for physiological signal monitoring, while also facilitating the treatment of various ocular diseases. It covers contact lens materials, fabrication technologies, and integration methods. We also highlight and discuss a critical comparison of SCLs with electrical, microfluidic, and optical signal outputs in health monitoring. Their advantages and disadvantages could help researchers to make decisions when developing SCLs with desired properties for physiological signal monitoring. These unique capabilities make SCLs promising diagnostic and therapeutic tools. Despite the extensive research in SCLs, new technologies are still in their early stages of development and there are a few challenges to be addressed before these SCLs technologies can be successfully commercialized particularly in the form of rigorous clinical trials.

5.
Diabetol Metab Syndr ; 16(1): 93, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658994

RESUMO

BACKGROUND: The global prevalence of obesity and overweight is a significant concern in the field of public health. However, addressing and combating these conditions pose considerable challenges. Numerous interventional studies have been conducted to assess the possible impact of bupropion on weight reduction. The primary objective of this study was to conduct a comprehensive investigation into the effects of bupropiona alone and in combination with naltrexone on weight, body mass index (BMI), and waist circumferences (WC). METHODS: A systematic search was conducted in five databases using established keywords. The purpose of this search was to uncover controlled trials that examined the impact of bupropion, either as a standalone intervention or in combination with naltrexone, on weight loss outcomes. The random-effects model analysis was used to provide pooled weighted mean difference and 95% confidence intervals. RESULTS: Twenty five studies with 22,165 participants' were included in this article. The pooled findings showed that bupropion administration has an effect on lowering weight (WMD: -3.67 kg, 95% CI: -4.43 to -2.93) and WC (WMD: -2.98 cm, 95% CI -3.78 to -2.19) in compared with control groups. The analysis also showed that the effects of the present intervention on weight and WC during the intervention are > 26 weeks and ≤ 26 weeks compared to the other group, respectively. In addition, changes in weight loss and WC after receiving bupropion together with naltrexone were more compared to bupropion alone. CONCLUSIONS: In conclusion, the addition of combination therapies like bupropion and naltrexone to lifestyle modifications including diet would cause significant weight loss.

6.
Magn Reson Med ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650444

RESUMO

PURPOSE: To improve image quality, mitigate quantification biases and variations for free-breathing liver proton density fat fraction (PDFF) and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ quantification accelerated by radial k-space undersampling. METHODS: A free-breathing multi-echo stack-of-radial MRI method was developed with compressed sensing with multidimensional regularization. It was validated in motion phantoms with reference acquisitions without motion and in 11 subjects (6 patients with nonalcoholic fatty liver disease) with reference breath-hold Cartesian acquisitions. Images, PDFF, and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ maps were reconstructed using different radial view k-space sampling factors and reconstruction settings. Results were compared with reference-standard results using Bland-Altman analysis. Using linear mixed-effects model fitting (p < 0.05 considered significant), mean and SD were evaluated for biases and variations of PDFF and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ , respectively, and coefficient of variation on the first echo image was evaluated as a surrogate for image quality. RESULTS: Using the empirically determined optimal sampling factor of 0.25 in the accelerated in vivo protocols, mean differences and limits of agreement for the proposed method were [-0.5; -33.6, 32.7] s-1 for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-1.0%; -5.8%, 3.8%] for PDFF, close to those of a previous self-gating method using fully sampled radial views: [-0.1; -27.1, 27.0] s-1 for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-0.4%; -4.5%, 3.7%] for PDFF. The proposed method had significantly lower coefficient of variation than other methods (p < 0.001). Effective acquisition time of 64 s or 59 s was achieved, compared with 171 s or 153 s for two baseline protocols with different radial views corresponding to sampling factor of 1.0. CONCLUSION: This proposed method may allow accelerated free-breathing liver PDFF and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ mapping with reduced biases and variations.

7.
Int Immunopharmacol ; 132: 111946, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552292

RESUMO

Ensuring the homeostatic integrity of pulmonary artery endothelial cells (PAECs) is essential for combatting pulmonary arterial hypertension (PAH), as it equips the cells to withstand microenvironmental challenges. Spermidine (SPD), a potent facilitator of autophagy, has been identified as a significant contributor to PAECs function and survival. Despite SPD's observed benefits, a comprehensive understanding of its protective mechanisms has remained elusive. Through an integrated approach combining metabolomics and molecular biology, this study uncovers the molecular pathways employed by SPD in mitigating PAH induced by monocrotaline (MCT) in a Sprague-Dawley rat model. The study demonstrates that SPD administration (5 mg/kg/day) significantly corrects right ventricular impairment and pathological changes in pulmonary tissues following MCT exposure (60 mg/kg). Metabolomic profiling identified a purine metabolism disorder in MCT-treated rats, which SPD effectively normalized, conferring a protective effect against PAH progression. Subsequent in vitro analysis showed that SPD (0.8 mM) reduces oxidative stress and apoptosis in PAECs challenged with Dehydromonocrotaline (MCTP, 50 µM), likely by downregulating purine nucleoside phosphorylase (PNP) and modulating polyamine biosynthesis through alterations in S-adenosylmethionine decarboxylase (AMD1) expression and the subsequent production of decarboxylated S-adenosylmethionine (dcSAM). These findings advocate SPD's dual inhibitory effect on PNP and AMD1 as a novel strategy to conserve cellular ATP and alleviate oxidative injuries, thus providing a foundation for SPD's potential therapeutic application in PAH treatment.

8.
Bioengineering (Basel) ; 11(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534485

RESUMO

B0 field inhomogeneity is a long-lasting issue for Cardiac MRI (CMR) in high-field (3T and above) scanners. The inhomogeneous B0 fields can lead to corrupted image quality, prolonged scan time, and false diagnosis. B0 shimming is the most straightforward way to improve the B0 homogeneity. However, today's standard cardiac shimming protocol requires manual selection of a shim volume, which often falsely includes regions with large B0 deviation (e.g., liver, fat, and chest wall). The flawed shim field compromises the reliability of high-field CMR protocols, which significantly reduces the scan efficiency and hinders its wider clinical adoption. This study aims to develop a dual-channel deep learning model that can reliably contour the cardiac region for B0 shim without human interaction and under variable imaging protocols. By utilizing both the magnitude and phase information, the model achieved a high segmentation accuracy in the B0 field maps compared to the conventional single-channel methods (Dice score: 2D-mag = 0.866, 3D-mag = 0.907, and 3D-mag-phase = 0.938, all p < 0.05). Furthermore, it shows better generalizability against the common variations in MRI imaging parameters and enables significantly improved B0 shim compared to the standard method (SD(B0Shim): Proposed = 15 ± 11% vs. Standard = 6 ± 12%, p < 0.05). The proposed autonomous model can boost the reliability of cardiac shimming at 3T and serve as the foundation for more reliable and efficient high-field CMR imaging in clinical routines.

9.
Front Immunol ; 15: 1302903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500886

RESUMO

Background: Immune checkpoint therapy, involving the programmed cell death 1 (PD-1) monoclonal antibody, has revolutionized the treatment of cancer. Tertiary lymphatic structure (TLS) serves as an immune indicator to predict the efficacy of PD-1 antibody therapy. However, there is no clear result whether the distribution, quantity, and maturity of TLS can be effective indicators for predicting the clinical efficacy of anti-PD1 immunotherapy in patients with colorectal cancer (CRC). Methods: Fifty-seven patients who underwent surgical resection and thirty-nine patients who received anti-PD-1 immunotherapy were enrolled in this retrospective study. Immunohistochemical staining and multiple fluorescence immunohistochemistry were used to evaluate the mismatch repair (MMR) subtypes and TLS distribution, quantity, and maturity, respectively. Results: A comprehensive patient score system was built based on TLS quantity and maturity. We found that the proportion of patients with score >1 was much higher in the deficient mismatch repair(dMMR) group than in the proficient mismatch repair(pMMR) group, and this difference was mainly due to intratumoral TLS. Patient score, based on the TLS evaluation of whole tumor, peritumor, or intratumor, was used to evaluate the efficacy of anti-PD1 immunotherapy. Based only on the intratumor TLS evaluation, the proportion of patients with a score >1 was higher in the response (PR + CR) group than in the non-response (PD) group. Multivariate analysis revealed that patient scores were positively correlated with the clinical efficacy of immunotherapy. Further analysis of immune-related progression-free survival was performed in patients with CRC who received anti-PD-1 immunotherapy. Patients with score >1 based on the intratumor TLS evaluation had significantly better survival. Conclusions: These results suggest that the patient score based on intratumor TLS evaluation may be a good immune predictive indicator for PD-1 antibody therapy in patients with CRC.


Assuntos
Neoplasias Colorretais , Receptor de Morte Celular Programada 1 , Humanos , Estudos Retrospectivos , Neoplasias Colorretais/patologia , Prognóstico , Imunoterapia/métodos
10.
Med Sci Monit ; 30: e943049, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553816

RESUMO

BACKGROUND Triple-negative breast cancer (TNBC) is a distinct subtype of breast cancer, accounting for 12-18% of all breast cancer cases. It exhibits high heterogeneity and aggressiveness, resulting in a poorer prognosis with a high risk of early recurrence and metastasis. Due to the lack of expression of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2), as well as insensitivity to endocrine therapy, determining a standard treatment for TNBC is challenging. The identification of potential prognostic biomarkers is crucial for developing personalized treatment strategies for patients. MATERIAL AND METHODS Our study investigated the potential value of HSP90a in TNBC prognosis. A retrospective analysis was conducted on 127 TNBC patients and 127 Healthy controls from March 1, 2019 to July 31, 2022. Venous blood was collected and tested for HSP90alpha, CEA, CA199, and CA125, and we recorded the clinical characteristics of the patients, including age, BMI, alcohol consumption status, surgical history, CEA level, CA199 level, CA125 level, HSP90alpha level, tumor size, distant metastases, lymph node metastasis, and TNM stage. Univariate and multivariate methods were used to screen independent risk factors for progression-free survival (PFS) and overall survival (OS). RESULTS HSP90alpha is not only upregulated in TNBC but is also highly correlated with lymph node metastasis and TNM stage. The results of multivariate analysis showed that distant metastasis, TNM stage and HSP90a level were independent factors associated with PFS. BMI, tumor size, TNM stage, surgical history, and HSP90a level were independent factors influencing OS. CONCLUSIONS Our research findings demonstrate a significant association between high HSP90alpha expression and adverse clinical features, suggesting a poorer prognosis for TNBC patients.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/patologia , Estudos Retrospectivos , Metástase Linfática , Prognóstico , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais/metabolismo
11.
Chem Biodivers ; : e202400030, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511964

RESUMO

A traditional Chinese medicine ingredient, dendrobine, has been demonstrated to have anti-inflammatory properties. However, due to its poor anti-inflammatory properties, its clinical use is limited. Consequently, we have designed and synthesized 32 new amide/sulfonamide dendrobine derivatives and screened their anti-inflammatory activities in vitro. Experiments showed that nitric oxide (NO) generation in lipopolysaccharide (LPS)-induced RAW264.7 cells was strongly reduced by derivative 14, with an IC50 of 2.96 µM. Western blot research revealed that 14 decreased the concentration-dependent expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (INOS). Molecular docking was used to predict the binding of the inflammation-associated proteins COX-2 and INOS to compound 14.

12.
Bioresour Technol ; 399: 130615, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513926

RESUMO

Heterotrophic ammonia assimilation (HAA), an innovative technology for high-salinity wastewater treatment, demonstrates self-recovery capability following Cr (VI) stress. This study investigated the inhibitory effects and self-restoration mechanisms of Cr (VI) at various stress levels. The removal efficiencies of NH4+-N and Cr (VI) in the HAA gradually decreased with increasing influent Cr (VI) concentration. Exposure to Cr (VI) increased the amounts of high-molecular-weight proteins in soluble microbial products and stimulated the generation of extracellular polymeric substances. Heterotrophic functional microorganisms with Cr (VI) tolerance, such as Marinobacter and Planktosalinus, were enriched. An assimilation pathway gene (glnA) and a Cr (VI)-related gene (atoB) were also upregulated. After ceasing Cr (VI) addition, the HAA system demonstrated a 17.1 % increase in the removal efficiency of NH4+-N, which was attributable to its self-recovery ability. This study provides a scientific and theoretical foundation for the HAA process in resisting the impact of heavy-metal-containing wastewater and self-recovery.


Assuntos
Amônia , Cromo , Cromo/farmacologia , Águas Residuárias
13.
Phytochemistry ; 221: 114050, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479586

RESUMO

Under the guidance of antioxidant evaluation combined with molecular networking, six pairs of enantiomeric lignans including seven undescribed ones (1a, 2a/2b-4a/4b), along with five known analogs (1b, 5a/5b-6a/6b) were isolated from Cimicifuga heracleifolia Kom. Their structures were determined by extensive spectroscopic data analysis, including HRESIMS, 1D and 2D NMR, experimental and calculated ECD. All the enantiomeric isolates were evaluated for antioxidation by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging tests. Compounds 1a and 3a/3b exhibited great DPPH and ABTS scavenging activities. The results are of great value for understanding structurally interesting enantiomeric lignans with antioxidant activity from C. heracleifolia in depth and providing its further development in functional evaluation and drug development.


Assuntos
Benzotiazóis , Cimicifuga , Lignanas , Ácidos Sulfônicos , Lignanas/química , Antioxidantes/química , Estrutura Molecular
14.
Front Pharmacol ; 15: 1287262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464724

RESUMO

Background: The CONSORT Extension for Chinese Herbal Medicine Formula 2017 (CONSORT-CHM Formula 2017) has established a reporting standard for randomized controlled trials (RCTs) of Chinese Herbal Medicine Formula (CHMF) interventions; however, its adherence and implications for the design and execution of study design remain ambiguous. It is necessary to evaluate the level of compliance with the CONSORT-CHM Formula 2017 in RCTs conducted over the past 5 years, and to determine the reporting quality of clinical trials in this field. Methods: First, a systematic search is conducted for RCTs on CHMF in EBM Reviews, Allied and Complementary Medicine (AMED), Embase, Ovid-MEDLINE(R), Wanfang data, China National Knowledge Infrastructure (CNKI), VIP Chinese Medical Journal Database (VIP) and Chinese Biomedical Literature (CBM) database, that encompassed CHMF interventional RCTs published from 1 January 2018 to 8 June 2022, with language restriction to English or Chinese. Second, a descriptive analysis will be performed regarding the study design and general characteristics of the included trials. Third, for the quality assessment, we have subdivided the CONSORT-CHM Formula 2017 checklist (consisting of 22 extended items) into a total of 42 sub-questions to facilitate scoring, with a specific focus on the description, quality control, and safety assessment of CHMF interventions. Professional training and a pilot test on 100 randomly selected articles will be provided for all reviewers. Throughout this process, a standard operating procedure (SOP) for quality assessment will be developed to ensure consistency. Each item will be assessed by two reviewers in a paired back-to-back manner, and the compliance rate will be calculated to assess inter-rater agreement. Discussion: This review will identify the current reporting characteristics and quality of CHMF interventional studies and further evaluate the impact of CONSORT-CHM Formula 2017. The results may provide suggestions for future application or promotion of the guideline. Registration: The study has been registered on Open Science Framework (https://osf.io/xpn7f).

15.
Nanoscale ; 16(13): 6402-6428, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488215

RESUMO

The peripheral nervous and muscular system, a cornerstone of human physiology, plays a pivotal role in ensuring the seamless functioning of the human body. This intricate network, comprising nerves and muscles extending throughout the body, is essential for motor control, sensory feedback, and the regulation of autonomic bodily functions. The qualified implantable peripheral interface can accurately monitor the biopotential of the target tissue and conduct treatment with stimulation, enhancing the human-machine interaction and new achievements in disease cure. Implantable electrodes have revolutionized the field of neuromuscular interfaces, offering precise bidirectional communication between the neuromuscular system and external devices. They enable natural control for individuals with limb loss, bridging the gap between mind and machine and aiding neuromuscular rehabilitation. In research and medical diagnostics, implantable electrodes provide invaluable tools for studying neuromuscular function and the development of therapies. However, traditional rigid electrodes face challenges due to the dynamic nature of the peripheral neuromuscular system. Flexible and stretchable devices show immense promise in accommodating dynamic alterations, offering adaptability, and accurate monitoring of electrophysiological signals. This review delves into the challenges associated with the peripheral interface, primarily focusing on monitoring and stimulation. It then provides a summary of common materials and structural design optimizations, discusses technologies for enhancing interface adhesion and surface functionalization, and explores encapsulation methods for implanted devices. Recent advancements in energy supply and the applications of implantable, flexible, and stretchable devices are also comprehensively reviewed, with due consideration given to ethical concerns and signal analysis. The promising directions are finally presented to provide enlightenment for high-performance sensor-tissue interfaces in the future, which will promote profound progress in clinical and human-machine interaction research. Flexible and stretchable devices are at the forefront of healthcare, with the potential to transform the treatment of neuromuscular disorders and enhance human augmentation, blurring the lines between natural and artificial limbs. They represent a promising avenue for the future, with exciting applications in healthcare, science, and technology, promising to bring us closer to the seamless integration of human and machine in the realm of neuromuscular interfaces.


Assuntos
Membros Artificiais , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrodos Implantados , Eletrofisiologia
16.
J Agric Food Chem ; 72(13): 7374-7382, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526016

RESUMO

Brazzein (Brz) is a sweet-tasting protein composed of 54 amino acids and is considered as a potential sugar substitute. The current methods for obtaining brazzein are complicated, and limited information is available regarding its thermal stability. In this study, we successfully expressed recombinant brazzein, achieving a sweetness threshold of 15.2 µg/mL. Subsequently, we conducted heat treatments at temperatures of 80, 90, 95, and 100 °C for a duration of 2 h to investigate the structural changes in the protein. Furthermore, we employed hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) to analyze the effect of heating on the protein structure-sweetness relationships. Our results indicated that the thermal inactivation process primarily affects residues 6-14 and 36-45 of brazzein, especially key residues Tyr8, Tyr11, Ser14, Glu36, and Arg43, which are closely associated with its sweetness. These findings have significant implications for improving the thermal stability of brazzein.


Assuntos
Proteínas de Plantas , Edulcorantes , Proteínas de Plantas/metabolismo , Edulcorantes/química , Paladar
17.
Chin J Traumatol ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38448359

RESUMO

PURPOSE: With the increasing level of automation in automobiles, the advent of autonomous vehicles has reduced the tendency of drivers and passengers to focus on the task of driving. The increasing automation in automobiles reduced the drivers' and passengers' focus on driving, which allowed occupants to choose a more relaxed and comfortable sitting position. Meanwhile, the occupant's sitting position went from a frontal, upright position to a more relaxed and reclined one, which resulted in the existing restraint systems can not to keep occupants safe and secure. This study aimed to determine the effects of different reclining states on occupants' lumbar and neck injuries. METHODS: This is an original research on the field of automotive safety engineering. Occupants in different initial seating positions (25°, 35°, 45°, and 55°) were adapted to changes in seat back angle and restraint systems and placed in the same frontal impact environment. Neck injury indexes, lumbar axial compression force and acceleration, as well as occupant dynamic response during the impact, were compared in different seating positions. The injury response and kinematic characteristics of occupants in different reclining positions were analyzed by the control variable method. RESULTS: As the sitting angle increased, the occupant's head acceleration decreased, and the forward-lean angle decreased. Occupants in the standard sitting position had the greatest neck injury, with an Nij of 0.95, and were susceptible to abbreviated injury scale 2+ cervical medullary injuries. As the seatback angle increased, the geometric position of the lumbar spine tended to be horizontal, and the impact load transmitted greater forces to the lumbar spine. The occupant's lumbar injury was greatest in the lying position, with a peak axial compression force on the lumbar region of 5.5 KN, which was 2.3 KN greater than in the standard sitting position. CONCLUSION: The study of occupant lumbar and neck injuries based on different recline states can provide a theoretical basis for optimizing lumbar evaluation indexes, which is conducive to the understanding of the lumbar injury mechanism and the comprehensive consideration of occupant safety protection.

18.
Drug Des Devel Ther ; 18: 475-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405578

RESUMO

Purpose: The underlying causes of pulmonary arterial hypertension (PAH) often remain obscure. Addressing PAH with effective treatments presents a formidable challenge. Studies have shown that Hydroxysafflor yellow A (HSYA) has a potential role in PAH, While the mechanism underlies its protective role is still unclear. The study was conducted to investigate the potential mechanisms of the protective effects of HSYA. Methods: Using databases such as PharmMapper and GeneCards, we identified active components of HSYA and associated PAH targets, pinpointed intersecting genes, and constructed a protein-protein interaction (PPI) network. Core targets were singled out using Cytoscape for the development of a model illustrating drug-component-target-disease interactions. Intersection targets underwent analysis for Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Selected components were then modeled for target interaction using Autodock and Pymol. In vivo validation in a monocrotaline-induced PAH (MCT-PAH) animal model was utilized to substantiate the predictions made by network pharmacology. Results: We associated HSYA with 113 targets, and PAH with 1737 targets, identifying 34 mutual targets for treatment by HSYA. HSYA predominantly affects 9 core targets. Molecular docking unveiled hydrogen bond interactions between HSYA and several PAH-related proteins such as ANXA5, EGFR, SRC, PPARG, PGR, and ESR1. Conclusion: Utilizing network pharmacology and molecular docking approaches, we investigated potential targets and relevant human disease pathways implicating HSYA in PAH therapy, such as the chemical carcinogenesis receptor activation pathway and the cancer pathway. Our findings were corroborated by the efficacious use of HSYA in an MCT-induced rat PAH model, confirming its therapeutic potential.


Assuntos
Chalcona , Chalcona/análogos & derivados , Medicamentos de Ervas Chinesas , Hipertensão Arterial Pulmonar , Quinonas , Humanos , Animais , Ratos , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Remodelação Vascular , Simulação de Acoplamento Molecular , Chalcona/farmacologia
19.
Adv Mater ; : e2401370, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373399

RESUMO

Achieving desirable charge-transport highway is of vital importance for high-performance organic solar cells (OSCs). Here, it is shown how molecular packing arrangements can be regulated via tuning the alkyl-chain topology, thus resulting in a 3D network stacking and highly interconnected pathway for electron transport in a simple-structured nonfused-ring electron acceptor (NFREA) with branched alkyl side-chains. As a result, a record-breaking power conversion efficiency of 17.38% (certificated 16.59%) is achieved for NFREA-based devices, thus providing an opportunity for constructing low-cost and high-efficiency OSCs.

20.
Chem Biodivers ; 21(3): e202400184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372676

RESUMO

The phytochemical study of Peucedanum praeruptorum led to the isolation of twenty-five coumarins (1-25). Of which, (±) praeruptol A (±1), one pair of previous undescribed seco-coumarin enantiomers were obtained. Their structures were established according to HR-ESI-MS, NMR, X-ray single crystal diffraction analysis, as well as ECD calculation. All compounds were tested for anti-inflammatory activity in the RAW264.7 macrophage model, and eight compounds (7-10, and 13-16) exhibited significant inhibitory effects with IC50 values ranging from 9.48 to 34.66 µM. Among them, compound 7 showed the strongest inhibitory effect, which significantly suppressed the production of IL-6, IL-1ß, and TNF-α, as well as iNOS and COX-2 in a concentration-dependent manner. Further investigated results showed that compound 7 exerted an anti-inflammatory effect via the NF-κB signaling pathway.


Assuntos
Cumarínicos , NF-kappa B , NF-kappa B/metabolismo , Cumarínicos/farmacologia , Cumarínicos/metabolismo , Anti-Inflamatórios/farmacologia , Extratos Vegetais/química , Transdução de Sinais , Lipopolissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...